1-2-1 人工智能科学
1-2-1-1 简明定义
人工智能科学,很多情景用于指代广义人工智能科学,是人工智能科学应用最广泛的狭义定义,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能科学是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能科学从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能科学带来的科技产品,将会是人类智慧的“容器”。人工智能科学可以对人的意识、思维的信息过程的模拟。人工智能科学不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能科学是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能科学是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能科学研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 [1] 2017年12月,人工智能科学入选“2017年度中国媒体十大流行语”。 [2]
人工智能科学科学的定义有两个非常重要的关键词,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能科学的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能科学的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能科学相关的研究课题。
人工智能科学是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能科学)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能科学)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能科学已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能科学是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能科学将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能科学与思维科学的关系是实践和理论的关系,人工智能科学是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能科学不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能科学的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能科学学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能科学学科,它们将互相促进而更快地发展。 [3]
1-2-1-2 研究价值
具有人工智能的机器人
例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能科学这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。
通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。这类“机器学习”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。我们可以将这样的学习方式称之为“连续型学习”。但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机最难学会的就是“顿悟”。或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。人类的实践过程同时包括经验和创造。
1-2-1-3 发展阶段
1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能科学技术的一个完美表现。
从1956年正式提出人工智能科学学科算起,50多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能科学的目的就是让计算机这台机器能够像人一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。
当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。如今人工智能科学已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。例如,1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能科学始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能科学的进展而得以存在。
2019年3月4日,十三届全国人大二次会议举行新闻发布会,大会发言人张业遂表示,已将与人工智能科学密切相关的立法项目列入立法规划 [4] 。
1-2-1-4 实际应用
机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
1-2-1-5学科范畴
人工智能科学是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。
1-2-1-5-1涉及学科
哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。
1-2-1-5-2研究范畴
自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法
1-2-1-6 相关知识
1-2-1-6-1意识和人工智能科学
人工智能科学就其本质而言,是对人的思维的信息过程的模拟。
对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。
弱人工智能科学如今不断地迅猛发展,尤其是2008年经济危机后,美日欧希望借机器人等实现再工业化,工业机器人以比以往任何时候更快的速度发展,更加带动了弱人工智能科学和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。
而强人工智能科学则暂时处于瓶颈,还需要科学家们和人类的努力。
1-2-1-6-2 技术研究
用来研究人工智能科学的主要物质基础以及能够实现人工智能科学技术平台的机器就是计算机,人工智能科学的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能科学还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能科学学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面
。
1-2-1-6-3研究方法
如今没有统一的原理或范式指导人工智能科学研究。许多问题上研究者都存在争论。其中几个长久以来仍没有结论的问题是:是否应从心理或神经方面模拟人工智能科学?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能科学研究是没有关系的?智能行为能否用简单的原则(如逻辑或优化)来描述?还是必须解决大量完全无关的问题?
智能是否可以使用高级符号表达,如词和想法?还是需要“子符号”的处理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能科学)的概念,也提议人工智能科学应归类为SYNTHETIC INTELLIGENCE,[29]这个概念后来被某些非GOFAI研究者采纳。
1-2-1-6-4大脑模拟
主学科:控制论和计算神经科学
20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控制论之间的联系。其中还造出一些使用电子网络构造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 这些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协会会议.直到1960, 大部分人已经放弃这个方法,尽管在80年代再次提出这些原理。
1-2-1-6-5符号处理
主学科:GOFAI
当20世纪50年代,数字计算机研制成功,研究者开始探索人类智能是否能简化成符号处理。研究主要集中在卡内基梅隆大学, 斯坦福大学和麻省理工学院,而各自有独立的研究风格。JOHN HAUGELAND称这些方法为GOFAI(出色的老式人工智能科学)。[33] 60年代,符号方法在小型证明程序上模拟高级思考有很大的成就。基于控制论或神经网络的方法则置于次要。[34] 60~70年代的研究者确信符号方法最终可以成功创造强人工智能科学的机器,同时这也是他们的目标。
认知模拟经济学家赫伯特•西蒙和艾伦•纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们为人工智能科学的基本原理打下基础,如认知科学, 运筹学和经营科学。他们的研究团队使用心理学实验的结果开发模拟人类解决问题方法的程序。这方法一直在卡内基梅隆大学沿袭下来,并在80年代于SOAR发展到高峰。基于逻辑不像艾伦•纽厄尔和赫伯特•西蒙,JOHN MCCARTHY认为机器不需要模拟人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表示, 智能规划和机器学习. 致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他地方开发编程语言PROLOG和逻辑编程科学.“反逻辑”斯坦福大学的研究者 (如马文•闵斯基和西摩尔•派普特)发现要解决计算机视觉和自然语言处理的困难问题,需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" .常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一个复杂的概念。基于知识大约在1970年出现大容量内存计算机,研究者分别以三个方法开始把知识构造成应用软件。这场“知识革命”促成专家系统的开发与计划,这是第一个成功的人工智能科学软件形式。“知识革命”同时让人们意识到许多简单的人工智能科学软件可能需要大量的知识。
1-2-1-6-6子符号法
80年代符号人工智能科学停滞不前,很多人认为符号系统永远不可能模仿人类所有的认知过程,特别是感知,机器人,机器学习和模式识别。很多研究者开始关注子符号方法解决特定的人工智能科学问题。
自下而上, 接口AGENT,嵌入环境(机器人),行为主义,新式AI机器人领域相关的研究者,如RODNEY BROOKS,否定符号人工智能科学而专注于机器人移动和求生等基本的工程问题。他们的工作再次关注早期控制论研究者的观点,同时提出了在人工智能科学中使用控制理论。这与认知科学领域中的表征感知论点是一致的:更高的智能需要个体的表征(如移动,感知和形象)。计算智能80年代中DAVID RUMELHART 等再次提出神经网络和联结主义. 这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。
1-2-1-6-7统计学法
90年代,人工智能科学研究发展出复杂的数学工具来解决特定的分支问题。这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是人工智能科学成功的原因。共用的数学语言也允许已有学科的合作(如数学,经济或运筹学)。STUART J. RUSSELL和PETER NORVIG指出这些进步不亚于“革命”和“NEATS的成功”。有人批评这些技术太专注于特定的问题,而没有考虑长远的强人工智能科学目标。
1-2-1-6-8集成方法
智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系统称为混合智能系统 ,而对这种系统的研究则是人工智能科学系统集成。分级控制系统则给反应级别的子符号AI 和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。
1-2-1-6-9智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信息感应与辨证处理。
1-2-1-6-10安全问题
人工智能科学还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患也在多部电影中发生过,其主要的关键是允不允许机器拥有自主意识的产生与延续,如果使机器拥有自主意识,则意味着机器具有与人同等或类似的创造性,自我保护意识,情感和自发行为。
1-2-1-6-11实现方法
人工智能科学在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(ENGINEERING APPROACH),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(MODELING APPROACH),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。遗传算法(GENERIC ALGORITHM,简称GA)和人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能科学,要求编程者具有生物学的思考方法,入门难度大一点。但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。
参考资料
1. 人工智能,科大讯飞志在何方? .赛迪网.2014/1031[引用日期2016-01-19]
2. 2017年度中国媒体十大流行语:“十九大”“新时代”上榜 .澎湃网[引用日期2017-12-09]
3. 为什么人工智能(AI)如此难以预测? .腾讯科技.20141229[引用日期2016-01-19]
4. 人工智能立法提速 把握“边界”是关键 .人民网[引用日期2019-03-05]
5.百度词条人工智能
[1-0]
1-2-2 人工智能表象
1-2-2-1 人工智能产业
人工智能产业,是指人工智能的产业集群、产业园区。
国家规划
2018年11月,工业和信息化部发布《新一代人工智能产业创新重点任务揭榜工作方案》,征集并遴选一批掌握关键核心技术、具备较强创新能力的单位集中攻关,重点突破一批技术先进、性能优秀、应用效果好的人工智能标志性产品、平台和服务。 [2]
产业现状
当前中国人工智能产业加速发展,从基础支撑、核心技术到行业应用的产业链条正在形成,产业集群初步显现,一批创新活跃、特色鲜明的创新企业加速成长,新模式、新业态不断涌现,整体呈现蓬勃发展态势。但产业发展也面临核心基础技术薄弱、与实体经济融合不够深入等问题。 [2]
[1-1]
1-2-2-2 人工智能技术
人工智能涉及的学科很广,一般人工智能技术特指人工智能科学转化为人工智能产品所需的核心技术。
核心技术主要分3大部分:
1 数据处理:大数据的存储与处理是核心技术。
2 算法:数据挖掘所涉及的机器学习,深度学习和强化学习等是主流方向。
3 辅助支持技术:包括机器人硬件设计与生产,高效数据标注,云计算,GPU等专用芯片辅助计算加速,交互系统编程等。
1-2-2-3 人工智能产品
图1-2-1人工智能产品示意图
目前来说,成功商业化落地的基本在感知层面。
常见举例:
1. 人脸检测和识别。
2. 泛图像识别 (延伸到视频): 例如看看照片里都出现了什么物品,识别下logo之类的
3. 语言识别:例如Siri和各种音箱的底层技术
4. 聊天机器人:自然语言处理的应用 -- 首先分析意图,之后去数据库里面召回相关的对话
5. 智能搜索 / 推荐
6. 时间序列预测性问题:胜者为王。通过AI来预测股价等等
7. 实体机器人相关应用
应用前景未知的:
1. 商用自动驾驶
2. NLG
3. 图像生成:换脸等技术,增强学习到现实场景中的应用。
[1-2]
1-2-3 人工智能生命
生命体(biomass)是指以繁殖为目的,能自发进行熵变的自我进化体系。
在生命体定义基础上,具备下述要素的哲学对象,称之为人工智能生命(体)。
1 第一个合格个体由人类智能创造或由人类智能创造的环境场中因随机事件产生。
2 具有自我意识,独立思想。
3 进化趋势不完全依赖于人类社会。